See email for exam 2 stats (well done!).
Closing Thurs: $\quad 4.4$
Closing next Tues: 4.4-5
Closing next Thurs: 4.7 (last assignment)

Entry Task: Review! How would you evaluate these old final questions:

1. $\lim _{x \rightarrow 0} \frac{e^{x}-x}{5 \cos (x)+3 \sin (x)}$
2. $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$
3. $\lim _{x \rightarrow 1^{+}} \frac{x-10}{x(1-x)}$

4.4 L'Hopital's Rule

A shortcut method for some limits.
2. $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$

L'Hopital's Rule (0/O case)
Suppose $\boldsymbol{g}(\boldsymbol{a})=\mathbf{0}$ and $\boldsymbol{f}(\boldsymbol{a})=\mathbf{0}$ and f and g are differentiable at $x=a$, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

3. $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x}$

Examples:

1. $\lim _{x \rightarrow 4} \frac{16-x^{2}}{4-x}$

Aside: Sketch of derivation
Assume $g(a)=0$ and $f(a)=0$
(These explanations are for the case when $g^{\prime}(a)$ is not zero).

Explanation 1 (def' n of derivative)

$$
\frac{f^{\prime}(a)}{g^{\prime}(a)}=\frac{\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}}{\lim _{x \rightarrow a} \frac{g(x)-g(a)}{x-a}}
$$

provided these limits exist we have:

$$
\begin{aligned}
\frac{f^{\prime}(a)}{g^{\prime}(a)} & =\lim _{x \rightarrow a} \frac{\frac{f(x)-f(a)}{x-a}}{\frac{g(x)-g(a)}{x-a}} \\
& =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{g(x)-g(a)}=\lim _{x \rightarrow a} \frac{f(x)}{g(x)}
\end{aligned}
$$

Explanation 2 (tangent line approx.):
The tangent lines for $f(x)$ and $g(x)$ at

$$
\begin{aligned}
& x=a \text { are } \\
& y=f^{\prime}(a)(x-a)+0 \\
& y=g^{\prime}(a)(x-a)+0
\end{aligned}
$$

And we know these approximate the functions $f(x)$ and $g(x)$ better and better the closer x gets to a , so Thus,
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(a)(x-a)}{g^{\prime}(a)(x-a)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}$

Sometimes you have to use it more than once.
Example:

$$
\lim _{x \rightarrow 1} \frac{x-\sin (x-1)-1}{(x-1)^{3}}
$$

L'Hopitals rule can also be used directly for the ∞ / ∞ case

Example:

1. $\lim _{x \rightarrow \infty} \frac{5 x+7}{6+13 x}$
2. $\lim _{x \rightarrow \infty} x e^{-3 x}$
3. $\lim _{x \rightarrow \infty} \frac{3 x+1}{\sqrt{9+4 x^{2}}}$

Other indeterminant forms:
$0 \cdot \infty$: (rewrite as a fraction) $\lim _{x \rightarrow 0^{+}} x \ln (x)$
$\lim _{x \rightarrow 0^{+}} x \mathrm{e}^{1 / \mathrm{x}}$
$\infty-\infty$: (combine into a fraction)
$\lim _{t \rightarrow \infty} \frac{2}{t(1+3 t)^{2}}-\frac{2}{t}$
$\mathbf{0}^{\mathbf{0}}, \infty^{\mathbf{0}}, \mathbf{1}^{\infty}$: (Use $\left.\ln ()\right)$
$\lim _{x \rightarrow 0^{+}} x^{x}$
$\lim _{x \rightarrow \infty}\left(1+\frac{2}{x}\right)^{x}$

Aside (you don't need to know this): In some bank accounts interest is This is an important application of what we just discussed: computed once a month, for some every day, for some every second. If you wanted interested to always be

The formula for compound interest is

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

$\mathrm{P}=$ starting balance,
A = end balance,
$r=$ annual rate,
$\mathrm{n}=$ number of times interest is compounded each year,
$t=$ number of years computed (continuously), then the new formula would be

$$
A=\lim _{n \rightarrow \infty} P\left(1+\frac{r}{n}\right)^{n t}
$$

You can use the techniques just discussed to find this limit and you get $\lim _{n \rightarrow \infty} P\left(1+\frac{r}{n}\right)^{n t}=P e^{r t}$

Thus,

$$
A=P e^{r t}
$$

is the continuous compounding interest formula.

